Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Methyl-6-(4,4,10,13,14-pentamethyl-3oxo-2,3,4,5,6,7,10,11,12,13,14,15,16,-17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl)hept-2-enoic acid

Mohammad Arfan,^a Abdur Rauf,^a M. Nawaz Tahir,^b* Mumtaz Ali^c and Ghias Uddin^a

^aInstitute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan, ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and ^cDepartment of Chemistry, University of Malalkand, KPK, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 17 February 2011; accepted 19 February 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.061; wR factor = 0.186; data-to-parameter ratio = 9.8.

In the title compound, $C_{30}H_{46}O_3$, an isolation product of *Pistacia integerima Stewart*, the five-membered ring is nearly in the envelope form. A 6-carboxyhept-5-en-2-yl group is attached to the five-membered ring. An *S*(6) ring motif is formed due to intramolecular $C-H\cdots O$ hydrogen bonding. In the crystal, intermolecular $O-H\cdots O$ hydrogen bonds form carboxylate dimers with $R_2^2(8)$ ring motifs.

Related literature

For related structures and background, see: Lanfredi *et al.* (1975); Ahmad *et al.* (2010). For graph-set notation, see: Bernstein *et al.* (1995). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data C₃₀H₄₆O₃

 $M_r = 454.67$

Tetragonal, $P4_{3}2_{1}2$ a = 13.3167 (6) Å c = 31.1595 (14) Å V = 5525.7 (4) Å³ Z = 8

Data collection

Bruker Kappa APEXII CCD	80888 measured reflections
diffractometer	3012 independent reflections
Absorption correction: multi-scan	1936 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.103$
$T_{\min} = 0.935, \ T_{\max} = 0.965$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.061$ 306 parameters $wR(F^2) = 0.186$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.20 \text{ e } \text{Å}^{-3}$ 3012 reflections $\Delta \rho_{min} = -0.15 \text{ e } \text{Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$02 - H2 \cdots O3^{i}$ $C20 - H20A \cdots O2$	0.82 0.97	1.85 2.21	2.645 (7) 2.873 (7)	162 125

Symmetry code: (i) y, x, -z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2281).

References

- Ahmad, S., Ali, M., Ansari, S. H. & Ahmad, F. (2010). J. Saudi Chem. Soc. 14, 409–412.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Lanfredi, A. M. M., Tiripicchio, A., Camellini, M. T. & Scapini, G. (1975). Cryst. Struct. Commun. 4, 551–554.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-1}$

 $0.28 \times 0.15 \times 0.10 \text{ mm}$

T = 296 K

Acta Cryst. (2011). E67, o711 [doi:10.1107/S1600536811006283]

2-Methyl-6-(4,4,10,13,14-pentamethyl-3-oxo-2,3,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl)hept-2-enoic acid

M. Arfan, A. Rauf, M. N. Tahir, M. Ali and G. Uddin

Comment

The crystal structure of Methyl (13α , 14β , 20S, 24Z)-3-oxo-lanosta-8, 24-dien-26-oate (Lanfredi *et al.*, 1975) has been previously published which is closely related to the title compound (I. Fig. 1). This compound has been derived from the berries of *Schinus molle*. The title compound is isolated from the galls of *Pistacia integerima Stewart* which were collected from Razagran, District Dir, KPK, Pakistan. The isolated compound from the galls of *Pistacia integerima Stewart* by Ahmad *et al.*, 2010 and reported as Pisticialanstenoic acid, seems the same as (I). However their spectral studies differ a litle bit from our X-ray analysis.

In (I), three six membered rings A (C1—C6), B (C5—C10) and C (C9—C14) are confirmed by different puckering parameters (Cremer & Pople, 1975). The puckering amplitude Q for the rings A, B and C have values of 0.490 (5) Å, 0.503 (4) Å and 0.540 (4) Å, θ for the rings A, B and C have values of 20.4 (6)°, 131.6 (6)° and 119.3 (4)°, φ for the rings A, B and C have values of 217.0 (17)°, 244.0 (7)° and 69.7 (5)°, respectively. The five membered ring D (C13—C17) has approximately envelop confirmation. The linear chain E (C20/C21/C22/C24) is planar with r. m. s. deviation of 0.0175 Å. The groups F (C18/C19/C25) and G (C23/O2/O3) are of course planar. The dihedral angle between E/F, E/G and F/G is 46.67 (5)°, 8.64 (1)° and 49.61 (5)°, respectively. There exist a strong intramolecular C—H…O and intermolecular O—H…O type H-bonding (Table 1, Fig. 2). Due to the inramolecular H-bonding S(6) ring motif is formed (Bernstein *et al.*, 1995). The molecules are stabilized in the form of conventional carboxylate dimers with $R_2^2(8)$ ring motifs (Fig. 2).

Experimental

The dried and crushed galls of Pistacia chinensis var integerima (5 kg) were subjected to cold extraction with methanol (MeOH). The MeOH extract (400 g) was suspended in water and successively partitioned with n-hexane, CHCl₃, EtOAc and butanol (BuOH). The CHCl₃ fraction (10 g) was subjected to column chromatography on silica gel. The column was first eluted with n-hexane:EtOAc (100:0 \rightarrow 0:100) as solvent system. A total of 13 fractions, RF-1 to RF-13 were obtained based on TLC profiles. White crude product of fraction RF-4 was separated from the solution by decantation. This crude material was washed with acetone for several times. White crystals were obtained by re-crystallization from a mixture of n-hexane:acetone (80:20). Yield: 90 mg.

Refinement

In the absence of anomalous scattering factor all of the Friedel pairs were merged. Initially all H-atoms were taken from the difference Fourier map and at the last stage these H-atoms were geometrically treated.

The H-atoms were positioned geometrically (O—H = 0.82, C–H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = xU_{eq}(C, O)$, where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Figures

Fig. 1. View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form carboxylate dimers with $R_2^2(8)$ ring motif.

2-Methyl-6-(4,4,10,13,14-pentamethyl-3-oxo-2,3,4,5,6,7,10,11,12,13,14,15,16,17- tetradecahydro-1Hcyclopenta[a]phenanthren-17-yl)hept-2-enoic acid

Crystal data

C ₃₀ H ₄₆ O ₃
$M_r = 454.67$
Tetragonal, P4 ₃ 2 ₁ 2
Hall symbol: P 4nw 2abw
<i>a</i> = 13.3167 (6) Å
<i>c</i> = 31.1595 (14) Å
$V = 5525.7 (4) \text{ Å}^3$
Z = 8
F(000) = 2000

Data collection

Bruker Kappa APEXII CCD diffractometer	3012 independent reflections
Radiation source: fine-focus sealed tube	1936 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.103$
Detector resolution: 7.50 pixels mm ⁻¹	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
ω scans	$h = -15 \rightarrow 15$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$k = -15 \rightarrow 15$
$T_{\min} = 0.935, T_{\max} = 0.965$	$l = -36 \rightarrow 37$
80888 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.061$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.186$	H-atom parameters constrained

 $D_{\rm x} = 1.093 {\rm Mg m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 1936 reflections $\theta = 2.0 - 25.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 296 KNeedle, brown $0.28 \times 0.15 \times 0.10 \text{ mm}$

<i>S</i> = 1.03	$w = 1/[\sigma^2(F_0^2) + (0.086P)^2 + 1.2062P]$ where $P = (F_0^2 + 2F_c^2)/3$
3012 reflections	$(\Delta/\sigma)_{max} < 0.001$
306 parameters	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
01	0.0467 (3)	0.2309 (4)	0.45862 (16)	0.153 (3)
O2	0.4258 (4)	0.3086 (4)	0.04257 (10)	0.126 (2)
O3	0.4457 (3)	0.2870 (3)	-0.02665 (10)	0.0945 (15)
C1	0.0545 (3)	0.1086 (4)	0.40354 (12)	0.0697 (16)
C2	0.0997 (4)	0.1819 (4)	0.43511 (15)	0.0853 (19)
C3	0.2098 (4)	0.1923 (6)	0.43906 (16)	0.113 (3)
C4	0.2651 (3)	0.1886 (4)	0.39648 (13)	0.0790 (19)
C5	0.2386 (3)	0.0961 (3)	0.36929 (11)	0.0543 (11)
C6	0.1235 (3)	0.0989 (3)	0.36259 (11)	0.0531 (13)
C7	0.0906 (4)	0.0152 (4)	0.33306 (13)	0.090 (2)
C8	0.1410 (3)	0.0268 (4)	0.28990 (12)	0.0683 (16)
C9	0.2428 (3)	0.0658 (3)	0.28939 (10)	0.0519 (11)
C10	0.2894 (3)	0.1031 (4)	0.32563 (11)	0.0623 (14)
C11	0.4001 (3)	0.1270 (4)	0.32455 (11)	0.0750 (18)
C12	0.4550 (3)	0.1281 (4)	0.28202 (11)	0.0690 (18)
C13	0.3835 (3)	0.1393 (3)	0.24358 (11)	0.0512 (11)
C14	0.3017 (3)	0.0559 (3)	0.24792 (11)	0.0545 (14)
C15	0.2439 (3)	0.0683 (4)	0.20556 (11)	0.0664 (15)
C16	0.3252 (4)	0.0930 (4)	0.17256 (12)	0.0714 (15)
C17	0.4235 (3)	0.1184 (3)	0.19773 (11)	0.0587 (14)
C18	0.4879 (3)	0.1963 (3)	0.17434 (12)	0.0647 (16)
C19	0.5185 (4)	0.1526 (3)	0.13015 (12)	0.0750 (16)
C20	0.5711 (4)	0.2247 (4)	0.10054 (12)	0.0767 (18)
C21	0.5919 (3)	0.1785 (3)	0.05758 (13)	0.0670 (17)
C22	0.5515 (3)	0.1957 (3)	0.01936 (12)	0.0597 (14)
C23	0.4697 (3)	0.2684 (3)	0.01166 (14)	0.0667 (17)
C24	0.5897 (3)	0.1425 (3)	-0.02023 (13)	0.0737 (17)
C25	0.5801 (4)	0.2295 (4)	0.19933 (15)	0.094 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C26	0.3361 (3)	0.2445 (3)	0.24457 (13)	0.0650 (16)
C27	0.3455 (4)	-0.0514 (3)	0.24816 (14)	0.0810 (19)
C28	0.2784 (5)	0.0019 (5)	0.39218 (17)	0.112 (3)
C29	0.0378 (6)	0.0107 (5)	0.42829 (18)	0.130 (3)
C30	-0.0470 (4)	0.1500 (6)	0.38967 (15)	0.111 (3)
H2	0.37831	0.34194	0.03369	0.1506*
H3A	0.23489	0.13882	0.45730	0.1358*
H3B	0.22476	0.25557	0.45307	0.1358*
H4A	0.33683	0.18870	0.40194	0.0946*
H4B	0.24930	0.24873	0.38024	0.0946*
Н6	0.11127	0.16060	0.34627	0.0637*
H7A	0.01822	0.01725	0.32950	0.1080*
H7B	0.10831	-0.04913	0.34551	0.1080*
H8A	0.14170	-0.03851	0.27608	0.0820*
H8B	0.09968	0.07064	0.27243	0.0820*
H11A	0.43374	0.07888	0.34294	0.0902*
H11B	0.40888	0.19258	0.33758	0.0902*
H12A	0.49270	0.06612	0.27900	0.0831*
H12B	0.50259	0.18325	0.28186	0.0831*
H15A	0.20905	0.00683	0.19801	0.0794*
H15B	0.19532	0.12242	0.20762	0.0794*
H16A	0.30481	0.14991	0.15518	0.0854*
H16B	0.33623	0.03599	0.15377	0.0854*
H17	0.46301	0.05644	0.19923	0.0702*
H18	0.44620	0.25568	0.16920	0.0777*
H19A	0.56223	0.09537	0.13492	0.0898*
H19B	0.45857	0.12811	0.11589	0.0898*
H20A	0.52964	0.28396	0.09671	0.0920*
H20B	0.63392	0.24570	0.11349	0.0920*
H21	0.64161	0.12939	0.05775	0.0805*
H24A	0.63824	0.09279	-0.01204	0.1105*
H24B	0.62052	0.19041	-0.03912	0.1105*
H24C	0.53461	0.11059	-0.03468	0.1105*
H25A	0.62046	0.27268	0.18170	0.1404*
H25B	0.61863	0.17158	0.20747	0.1404*
H25C	0.55949	0.26512	0.22462	0.1404*
H26A	0.29602	0.25408	0.21928	0.0973*
H26B	0.38814	0.29424	0.24548	0.0973*
H26C	0.29438	0.25074	0.26957	0.0973*
H27A	0.38542	-0.06134	0.22286	0.1215*
H27B	0.29170	-0.09931	0.24862	0.1215*
H27C	0.38672	-0.06017	0.27316	0.1215*
H28A	0.25466	-0.05697	0.37756	0.1687*
H28B	0.25480	0.00123	0.42129	0.1687*
H28C	0.35044	0.00259	0.39196	0.1687*
H29A	0.01134	-0.03938	0.40925	0.1956*
H29B	-0.00884	0.02219	0.45125	0.1956*
H29C	0.10060	-0.01211	0.43991	0.1956*
H30A	-0.07966	0.10242	0.37124	0.1662*

H30B	-0.03736	0.21201	0.37448	0.1662*
H30C	-0.08784	0.16178	0.41454	0.1662*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.090 (3)	0.218 (6)	0.152 (4)	-0.011 (3)	0.022 (3)	-0.121 (4)
O2	0.133 (4)	0.169 (4)	0.075 (2)	0.079 (3)	0.009 (2)	-0.017 (3)
03	0.122 (3)	0.100 (3)	0.0614 (18)	0.021 (2)	0.0003 (19)	-0.0075 (18)
C1	0.066 (3)	0.098 (3)	0.045 (2)	-0.016 (3)	0.010 (2)	-0.017 (2)
C2	0.068 (3)	0.123 (4)	0.065 (3)	-0.005 (3)	0.007 (2)	-0.037 (3)
C3	0.067 (3)	0.191 (7)	0.082 (3)	-0.007 (4)	0.001 (3)	-0.073 (4)
C4	0.059 (3)	0.109 (4)	0.069 (3)	-0.007 (3)	-0.003 (2)	-0.036 (3)
C5	0.063 (2)	0.061 (2)	0.0389 (17)	0.006 (2)	-0.0009 (18)	-0.0028 (18)
C6	0.052 (2)	0.070 (3)	0.0373 (17)	-0.009 (2)	0.0011 (16)	-0.0099 (18)
C7	0.094 (4)	0.116 (4)	0.061 (2)	-0.042 (3)	0.019 (3)	-0.036 (3)
C8	0.075 (3)	0.080 (3)	0.050 (2)	-0.013 (2)	0.004 (2)	-0.022 (2)
C9	0.064 (2)	0.053 (2)	0.0388 (18)	-0.0026 (19)	0.0047 (18)	-0.0079 (17)
C10	0.053 (2)	0.093 (3)	0.0408 (19)	-0.002 (2)	-0.0015 (18)	-0.004 (2)
C11	0.051 (3)	0.129 (4)	0.045 (2)	0.007 (3)	-0.0021 (19)	0.000 (2)
C12	0.057 (3)	0.101 (4)	0.049 (2)	0.006 (2)	0.002 (2)	0.001 (2)
C13	0.053 (2)	0.058 (2)	0.0425 (19)	0.0116 (18)	0.0040 (17)	0.0011 (17)
C14	0.068 (3)	0.051 (2)	0.0445 (19)	0.0072 (19)	0.0025 (19)	-0.0040 (18)
C15	0.076 (3)	0.080 (3)	0.0431 (19)	-0.006 (2)	0.001 (2)	-0.012 (2)
C16	0.092 (3)	0.080 (3)	0.0421 (19)	0.000 (3)	-0.003 (2)	-0.008 (2)
C17	0.067 (3)	0.058 (2)	0.051 (2)	0.018 (2)	0.011 (2)	0.0031 (18)
C18	0.075 (3)	0.058 (3)	0.061 (2)	0.011 (2)	0.011 (2)	0.007 (2)
C19	0.090 (3)	0.073 (3)	0.062 (2)	0.005 (3)	0.027 (2)	0.006 (2)
C20	0.095 (4)	0.078 (3)	0.057 (2)	-0.001 (3)	0.012 (2)	0.004 (2)
C21	0.074 (3)	0.056 (3)	0.071 (3)	0.000 (2)	0.023 (2)	0.008 (2)
C22	0.064 (3)	0.055 (2)	0.060 (2)	-0.008 (2)	0.018 (2)	-0.002 (2)
C23	0.073 (3)	0.064 (3)	0.063 (3)	-0.006 (2)	0.019 (2)	-0.010 (2)
C24	0.075 (3)	0.069 (3)	0.077 (3)	-0.008 (2)	0.024 (2)	-0.014 (2)
C25	0.088 (4)	0.112 (4)	0.081 (3)	-0.016 (3)	0.011 (3)	0.005 (3)
C26	0.069 (3)	0.059 (3)	0.067 (2)	0.005 (2)	0.015 (2)	-0.008 (2)
C27	0.114 (4)	0.060 (3)	0.069 (3)	0.018 (3)	0.023 (3)	0.001 (2)
C28	0.120 (5)	0.110 (5)	0.107 (4)	0.045 (4)	0.025 (4)	0.042 (4)
C29	0.171 (7)	0.131 (5)	0.089 (4)	-0.039 (5)	0.066 (4)	0.004 (4)
C30	0.053 (3)	0.203 (7)	0.077 (3)	-0.010 (4)	0.009 (2)	-0.029 (4)

Geometric parameters (Å, °)

O1—C2	1.209 (7)	С6—Н6	0.9800
O2—C23	1.247 (6)	С7—Н7А	0.9700
O3—C23	1.260 (5)	С7—Н7В	0.9700
O2—H2	0.8200	C8—H8A	0.9700
C1—C2	1.511 (7)	C8—H8B	0.9700
C1—C6	1.578 (5)	C11—H11A	0.9700
C1—C30	1.522 (7)	C11—H11B	0.9700

C1—C29	1.531 (8)	C12—H12A	0.9700
C2—C3	1.478 (8)	C12—H12B	0.9700
C3—C4	1.518 (6)	C15—H15A	0.9700
C4—C5	1.536 (6)	C15—H15B	0.9700
C5—C6	1.547 (6)	C16—H16A	0.9700
C5—C28	1.537 (7)	C16—H16B	0.9700
C5—C10	1.522 (5)	С17—Н17	0.9800
C6—C7	1.510 (6)	C18—H18	0.9800
С7—С8	1.511 (6)	С19—Н19А	0.9700
C8—C9	1.452 (6)	С19—Н19В	0.9700
C9—C10	1.381 (5)	C20—H20A	0.9700
C9—C14	1.517 (5)	C20—H20B	0.9700
C10-C11	1.509 (6)	C21—H21	0.9300
C11—C12	1.514 (5)	C24—H24A	0.9600
C12—C13	1.537 (5)	C24—H24B	0.9600
C13—C17	1.550 (5)	C24—H24C	0.9600
C13—C26	1.537 (6)	C25—H25A	0.9600
C13—C14	1.562 (6)	С25—Н25В	0.9600
C14—C15	1.537 (5)	С25—Н25С	0.9600
C14—C27	1.543 (6)	C26—H26A	0.9600
C15—C16	1.529 (6)	C26—H26B	0.9600
C16—C17	1.563 (6)	С26—Н26С	0.9600
C17—C18	1.531 (6)	С27—Н27А	0.9600
C18—C25	1.520 (6)	С27—Н27В	0.9600
C18—C19	1.549 (5)	С27—Н27С	0.9600
C19—C20	1.505 (6)	C28—H28A	0.9600
C20—C21	1.499 (6)	C28—H28B	0.9600
C21—C22	1.327 (6)	C28—H28C	0.9600
C22—C23	1.477 (6)	С29—Н29А	0.9600
C22—C24	1.511 (6)	С29—Н29В	0.9600
С3—НЗА	0.9700	С29—Н29С	0.9600
С3—Н3В	0.9700	C30—H30A	0.9600
C4—H4A	0.9700	С30—Н30В	0.9600
C4—H4B	0.9700	C30—H30C	0.9600
O2···O3 ⁱ	2.645 (7)	H11B…C4	2.6500
O2…C20	2.873 (7)	H11B…H4A	2.2200
$O3 \cdots O2^{i}$	2.645 (7)	H12A…C27	2.6900
01···H30C	2.4400	H12A…H17	2.5200
O1…H30B	2.8600	H12A···H27C	2.2000
01H34 ⁱⁱ	2.8900	H12B…C25	2.8400
01H20B	2 8900	H12BH25C	2 2200
02···H20A	2 2100	H12B H125C	2.2200
02H2 ⁱ	2 7800	H15AC8	3.0100
	2,8000	H15AU27D	2 2000
02H30A	2.6900	1115A1127D	2.3900
	2.0900		2.9500
O3…H25B ¹	2.7800	H15B····C26	2.7400
$O3 \cdots H8B^{V}$	2.8000	H15B…H8B	2.4900

O3…H24C	2.6400	H15B…H26A	2.2400
O3…H2 ⁱ	1.8500	H15B····C21 ^x	3.0200
C10…C26	3.211 (6)	H16A…C19	2.9500
C11···C27	3.441 (6)	H16A…C26	3.0900
C12···C25	3.352 (6)	H16A…H18	2.3900
C20…O2	2.873 (7)	H16A…H19B	2.4000
C25…C26	3.548 (7)	H16A…H26A	2.4300
C25…C12	3.352 (6)	H16B…C19	2.9700
C26…C25	3.548 (7)	H16B…H19B	2.3600
C26…C10	3.211 (6)	H16B…H27A	2.6000
C27…C11	3.441 (6)	H16B…C11 ^{iv}	3.1000
C28…C29	3.398 (10)	H16B…H11A ^{iv}	2.5900
C29···C28	3.398 (10)	H17…C27	2.6100
C1…H28B	3.0800	H17…H12A	2.5200
С3…Н29С	3.0900	H17…H19A	2.4600
C3…H28B	2.6700	H17…H25B	2.5900
C4···H11B	2.6500	H17…H27A	2.0200
С7…Н29А	2.7000	H17…H24C ^{vi}	2.3600
C7…H28A	2.7600	H18…C26	2.7700
С7…НЗОА	2.8100	H18…H16A	2.3900
С8…Н27В	2.9200	H18…H20A	2.5500
C8…H15B	2.9500	H18…H26A	2.5400
C8…H15A	3.0100	H18…H26B	2.5500
С9…Н6	2.7900	H18····C30 ⁱⁱⁱ	3.0600
C9…H26C	2.6300	H18····H30C ⁱⁱⁱ	2.5400
C10…H26C	2.6300	H19A…H17	2.4600
C10…H27C	3.0100	H19A…H25B	2.5900
C11…H26C	2.7600	H19B…C16	2.5500
C11···H16B ^{vi}	3.1000	H19B…H16A	2.4000
C11…H27C	2.9700	H19B…H16B	2.3600
C11···H4A	2.6800	H20A…O2	2.2100
C11…H28C	2.7600	H20A…C23	2.7800
C12…H27C	2.6800	H20A…H18	2.5500
C12…H25C	2.9100	H20B…C25	2.7800
C13…H25C	2.9400	H20B…H25A	2.1600
С15…Н26А	2.6000	H21…H24A	2.2300
С15…Н8А	2.9500	H24A…H21	2.2300
С15…Н8В	2.8300	H24B…O3	2.6900
С16…Н19В	2.5500	H24B····H26C ^v	2.5200
С16…Н27А	2.7100	H24C…O3	2.6400
С16…Н26А	2.6200	H24C···H17 ^{iv}	2.3600
С17…Н27А	2.5700	H25A…C20	2.6900
C18…H26A	3.0100	H25A…H20B	2.1600
C18…H26B	2.8900	H25B…H17	2.5900
C19…H16A	2.9500	H25B…H19A	2.5900
C19…H16B	2.9700	H25B····O3 ^{vi}	2.7800
C20…H25A	2.6900	H25C…C12	2.9100

C21···H26A ^v	2.9800	H25C…C13	2.9400
C21···H15B ^v	3.0200	H25C…C26	3.0500
C23…H8B ^v	2.9500	H25C…H12B	2.2200
C23…H20A	2.7800	H25C…H26B	2.4000
C23…H2 ⁱ	2.6500	H26A…C15	2.6000
C24····H26C ^v	3.0700	H26A…C16	2.6200
C25…H20B	2.7800	H26A…C18	3.0100
C25…H12B	2.8400	H26A…H15B	2.2400
C25…H26B	3.0600	H26A…H16A	2.4300
C26…H18	2.7700	H26A…H18	2.5400
C26…H15B	2.7400	H26A···C21 ^x	2.9800
C26…H16A	3.0900	H26B…C18	2.8900
C26…H25C	3.0500	H26B…C25	3.0600
C27…H17	2.6100	H26B…H12B	2.4100
С27…Н8А	2.8600	H26B…H18	2.5500
C27…H12A	2.6900	H26B…H25C	2.4000
С28…НЗА	2.7900	H26C…C9	2.6300
C28…H11A	2.7700	H26C…C10	2.6300
C28…H29C	2.8000	H26C…C11	2.7600
С28…Н7В	2.7800	H26C···C24 ^x	3.0700
С29…Н7А	3.0900	H26C···H24B ^x	2.5200
С29…Н7В	2.8600	H27A…C16	2.7100
C29…H28B	2.9000	H27A…C17	2.5700
С30…Н7А	2.7200	H27A…H16B	2.6000
C30…H18 ^{vii}	3.0600	H27A…H17	2.0200
H2···O2 ⁱ	2.7800	H27B…C8	2.9200
H2···O3 ⁱ	1.8500	H27B…H8A	2.3200
H2···C23 ⁱ	2.6500	H27B…H15A	2.3900
H2…H2 ⁱ	2.2100	H27B…H3B ^{xi}	2.4600
H3A…C28	2.7900	H27C…C10	3.0100
H3A…H28B	2.1600	H27C…C11	2.9700
H3A…O1 ⁱⁱ	2.8900	H27C…C12	2.6800
H3B…H27B ^{viii}	2.4600	H27C…H12A	2.2000
H4A…C11	2.6800	H28A…C7	2.7600
H4A…H11B	2.2200	H28A…H7B	2.1900
H4A…H28C	2.5000	H28A…H4B ^{xi}	2.6000
H4B…H6	2.4200	H28B…C1	3.0800
H4B…H28A ^{viii}	2.6000	H28B····C3	2.6700
Н6…С9	2.7900	H28B…C29	2.9000
H6…H4B	2.4200	H28B…H3A	2.1600
H6…H8B	2.6000	H28B…H29C	2.1400
H6…H30B	2.2700	H28C…C11	2.7600
H7A…C29	3.0900	H28C…H4A	2.5000
H7A…C30	2.7200	H28C…H11A	2.1400
H7A…H29A	2.6000	H29A…C7	2.7000

Н7А…Н30А	2.1600	H29A…H7A	2.6000
H7B…C28	2.7800	H29A…H7B	2.3700
H7B…C29	2.8600	H29A…H30A	2.5400
H7B…H28A	2.1900	H29B…O1	2.8900
H7B…H29A	2.3700	H29B…H30C	2.4200
H8A…C15	2.9500	H29C…C3	3.0900
H8A…C27	2.8600	H29C…C28	2.8000
H8A…H27B	2.3200	H29C…H28B	2.1400
H8A…H8A ^{ix}	2.5300	H30A…C7	2.8100
H8B…C15	2.8300	H30A…H7A	2.1600
H8B…H6	2.6000	H30A…H29A	2.5400
H8B…H15B	2.4900	H30A…O2 ^{vii}	2.8900
H8B····O3 ^x	2.8000	H30B…O1	2.8600
H8B···C23 ^x	2.9500	Н30В…Н6	2.2700
H11A…C28	2.7700	H30C…O1	2.4400
H11A…H28C	2.1400	H30C…H29B	2.4200
H11A…H16B ^{vi}	2.5900	H30C····H18 ^{vii}	2.5400
С23—О2—Н2	109.00	H8A—C8—H8B	107.00
$C_{2} = C_{1} = C_{2}$	106 3 (4)	C10-C11-H11A	107.00
$C_2 = C_1 = C_3 0$	107.7 (4)	C10-C11-H11B	107.00
$C_2 = C_1 = C_6$	110 3 (4)	C12—C11—H11A	108.00
C6-C1-C30	108 5 (3)	C12—C11—H11B	107.00
$C_{29} - C_{1} - C_{30}$	108.8 (5)	H11A—C11—H11B	107.00
C_{6} C_{1} C_{29}	115.0 (4)	C11—C12—H12A	109.00
01 - C2 - C3	118.6 (5)	C11—C12—H12B	109.00
C1 - C2 - C3	120.7 (5)	C13—C12—H12A	109.00
01 - 02 - 01	120.7(5)	C13—C12—H12B	109.00
$C_2 - C_3 - C_4$	1139(4)	H12A— $C12$ — $H12B$	108.00
C3—C4—C5	113.4 (4)	C14—C15—H15A	111.00
C4—C5—C6	106.4 (3)	C14—C15—H15B	111.00
C4—C5—C10	110.0 (3)	C16—C15—H15A	111.00
C6—C5—C10	108.6 (3)	C16—C15—H15B	111.00
C6—C5—C28	115.1 (4)	H15A—C15—H15B	109.00
C10-C5-C28	108.1 (4)	C15—C16—H16A	110.00
C4—C5—C28	108.6 (4)	C15—C16—H16B	110.00
C1—C6—C5	118.0 (3)	C17—C16—H16A	110.00
C5—C6—C7	110.6 (3)	C17—C16—H16B	110.00
C1—C6—C7	112.6 (4)	H16A—C16—H16B	108.00
C6—C7—C8	109.8 (4)	С13—С17—Н17	107.00
C7—C8—C9	117.5 (3)	С16—С17—Н17	107.00
C8—C9—C14	117.5 (3)	C18—C17—H17	107.00
C10—C9—C14	119.7 (3)	C17—C18—H18	108.00
C8—C9—C10	122.6 (3)	C19—C18—H18	108.00
C5—C10—C11	117.9 (3)	C25—C18—H18	108.00
C9—C10—C11	119.8 (3)	C18—C19—H19A	108.00
C5—C10—C9	120.6 (4)	C18—C19—H19B	108.00
C10-C11-C12	119.6 (3)	С20—С19—Н19А	108.00
C11—C12—C13	112.6 (3)	C20—C19—H19B	108.00

C12—C13—C17	119.2 (3)	H19A—C19—H19B	107.00
C12—C13—C26	109.1 (3)	C19—C20—H20A	109.00
C14—C13—C17	101.1 (3)	C19—C20—H20B	109.00
C14—C13—C26	111.1 (3)	C21—C20—H20A	109.00
C17—C13—C26	108.9 (3)	C21—C20—H20B	109.00
C12-C13-C14	107.2 (3)	H20A—C20—H20B	108.00
C9—C14—C13	111.9 (3)	C20—C21—H21	115.00
C9—C14—C27	105.8 (3)	C22—C21—H21	115.00
C13—C14—C15	101.5 (3)	C22—C24—H24A	109.00
C13—C14—C27	113.3 (3)	C22—C24—H24B	109.00
C15—C14—C27	107.0 (3)	C22—C24—H24C	109.00
C9—C14—C15	117.6 (3)	H24A—C24—H24B	109.00
C14—C15—C16	104.3 (3)	H24A—C24—H24C	110.00
C15—C16—C17	107.6 (3)	H24B—C24—H24C	109.00
C13—C17—C18	120.7 (3)	C18—C25—H25A	109.00
C16—C17—C18	112.2 (3)	C18—C25—H25B	109.00
C13—C17—C16	102.3 (3)	С18—С25—Н25С	109.00
C17—C18—C19	108.4 (3)	H25A—C25—H25B	109.00
C17—C18—C25	114.0 (3)	H25A—C25—H25C	110.00
C19—C18—C25	110.6 (4)	H25B—C25—H25C	109.00
C18—C19—C20	115.3 (3)	С13—С26—Н26А	109.00
C19—C20—C21	111.8 (4)	C13—C26—H26B	109.00
C20—C21—C22	131.0 (4)	C13—C26—H26C	109.00
C21—C22—C24	121.0 (4)	H26A—C26—H26B	110.00
C23—C22—C24	115.0 (3)	H26A—C26—H26C	109.00
$C_{21} - C_{22} - C_{23}$	123.9 (4)	H26B—C26—H26C	110.00
02-C23-C22	1201(4)	C14—C27—H27A	109.00
$03 - C^{23} - C^{22}$	1180(4)	C14—C27—H27B	109.00
02 - 023 - 03	121.9 (4)	C14 - C27 - H27C	109.00
C2—C3—H3A	109.00	$H_{27}A - C_{27} - H_{27}B$	110.00
$C_2 = C_3 = H_3 B$	109.00	$H_2/H = C_2/H_2/C$	109.00
$C_2 = C_3 = H_3 \Delta$	109.00	H27R C27 H27C	110.00
C4-C3-H3B	109.00	C5_C28_H28A	109.00
$H_{3} = C_{3} = H_{3} B$	109.00	C5-C28-H28B	109.00
$C_3 - C_4 - H_4 \Delta$	109.00	C5-C28-H28C	109.00
$C_3 C_4 H_4 R$	109.00	H28A C28 H28B	109.00
$C_5 = C_4 = H_4 \Delta$	109.00	$H_{20}A = C_{20} = H_{20}B$	109.00
$C_5 = C_4 = H_4 R_1$	109.00	H28R C28 H28C	110.00
	109.00	1120D - C20 - 1120C	100.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.00	C1 = C29 = H29R	109.00
	105.00	C1 = C29 = H29C	109.00
С5—С6—Н6	105.00	C1-C29-H29C	109.00
C/-CO-HO	105.00	H29A—C29—H29B	110.00
C_{0} C_{1} H/A	110.00	H29A-C29-H29C	109.00
$C_0 - C_1 - H/B$	110.00	$H_{2}YB = U_{2}Y = H_{2}YU$	109.00
	110.00	C1 = C30 = H30A	109.00
	110.00	C1—C30—H30B	109.00
H/A - C/ - H/B	108.00	C1—C30—H30C	109.00
C/—C8—H8A	108.00	H30A—C30—H30B	109.00
C'/—C8—H8B	108.00	H30A—C30—H30C	110.00

С9—С8—Н8А	108.00	H30B-C30-H30C	109.00
С9—С8—Н8В	108.00		
C6—C1—C2—O1	149.9 (5)	C10-C9-C14-C15	-148.9 (4)
C6—C1—C2—C3	-32.5 (6)	C10-C9-C14-C27	91.7 (5)
C29—C1—C2—O1	-84.9 (6)	C5-C10-C11-C12	176.1 (4)
C29—C1—C2—C3	92.7 (6)	C9-C10-C11-C12	11.1 (7)
C30-C1-C2-O1	31.6 (7)	C10-C11-C12-C13	19.5 (7)
C30-C1-C2-C3	-150.8 (5)	C11-C12-C13-C14	-52.8 (5)
C2-C1-C6-C5	40.4 (5)	C11—C12—C13—C17	-166.6 (4)
C2-C1-C6-C7	171.2 (4)	C11—C12—C13—C26	67.6 (5)
C29—C1—C6—C5	-79.7 (5)	C12-C13-C14-C9	59.9 (4)
C29—C1—C6—C7	51.1 (5)	C12—C13—C14—C15	-173.9 (3)
C30-C1-C6-C5	158.2 (4)	C12-C13-C14-C27	-59.6 (4)
C30-C1-C6-C7	-71.0 (5)	C17—C13—C14—C9	-174.6 (3)
O1—C2—C3—C4	-142.5 (6)	C17—C13—C14—C15	-48.4 (4)
C1—C2—C3—C4	39.9 (8)	C17—C13—C14—C27	65.9 (4)
C2—C3—C4—C5	-52.6 (7)	C26-C13-C14-C9	-59.2 (4)
C3—C4—C5—C6	57.3 (5)	C26-C13-C14-C15	67.0 (4)
C3—C4—C5—C10	174.7 (4)	C26—C13—C14—C27	-178.7 (3)
C3—C4—C5—C28	-67.1 (5)	C12—C13—C17—C16	156.9 (4)
C4—C5—C6—C1	-52.9 (5)	C12-C13-C17-C18	-77.8 (5)
C4—C5—C6—C7	175.4 (3)	C14—C13—C17—C16	39.9 (4)
C10—C5—C6—C1	-171.3 (4)	C14—C13—C17—C18	165.2 (3)
C10—C5—C6—C7	57.1 (4)	C26—C13—C17—C16	-77.1 (4)
C28—C5—C6—C1	67.4 (5)	C26—C13—C17—C18	48.2 (5)
C28—C5—C6—C7	-64.2 (4)	C9—C14—C15—C16	159.8 (4)
C4—C5—C10—C9	-145.8 (4)	C13-C14-C15-C16	37.5 (4)
C4—C5—C10—C11	49.4 (5)	C27-C14-C15-C16	-81.5 (4)
C6—C5—C10—C9	-29.7 (6)	C14—C15—C16—C17	-12.7 (5)
C6-C5-C10-C11	165.4 (4)	C15—C16—C17—C13	-17.3 (5)
C28—C5—C10—C9	95.8 (5)	C15-C16-C17-C18	-148.0 (4)
C28-C5-C10-C11	-69.1 (6)	C13-C17-C18-C19	178.4 (3)
C1—C6—C7—C8	165.3 (4)	C13—C17—C18—C25	54.8 (5)
C5—C6—C7—C8	-60.3 (5)	C16-C17-C18-C19	-61.0 (4)
C6—C7—C8—C9	35.0 (6)	C16—C17—C18—C25	175.4 (4)
C7—C8—C9—C10	-7.9 (7)	C17-C18-C19-C20	172.5 (4)
C7—C8—C9—C14	166.7 (4)	C25-C18-C19-C20	-61.9 (5)
C8—C9—C10—C5	5.7 (7)	C18-C19-C20-C21	-176.2 (4)
C8—C9—C10—C11	170.3 (4)	C19—C20—C21—C22	109.0 (5)
C14—C9—C10—C5	-168.8 (4)	C20—C21—C22—C23	-1.6 (7)
C14—C9—C10—C11	-4.2 (7)	C20—C21—C22—C24	176.6 (4)
C8—C9—C14—C13	153.2 (4)	C21—C22—C23—O2	-9.1 (7)
C8—C9—C14—C15	36.4 (5)	C21—C22—C23—O3	171.7 (4)
C8—C9—C14—C27	-83.0 (4)	C24—C22—C23—O2	172.6 (4)
C10-C9-C14-C13	-32.1 (5)	C24—C22—C23—O3	-6.7 (6)

Symmetry codes: (i) *y*, *x*, *-z*; (ii) *y*, *x*, *-z*+1; (iii) *-y*+1/2, *x*+1/2, *z*-1/4; (iv) *-y*+1/2, *x*-1/2, *z*-1/4; (v) *x*+1/2, *-y*+1/2, *-z*+1/4; (vi) *y*+1/2, *-x*+1/2, *z*+1/4; (vii) *y*-1/2, *-x*+1/2, *z*+1/4; (viii) *-x*+1/2, *y*+1/2, *-z*+3/4; (ix) *-y*, *-x*, *-z*+1/2; (x) *x*-1/2, *-y*+1/2, *-z*+1/4; (xi) *-x*+1/2, *y*+1/2, *-z*+3/4; (ix) *-y*, *-x*, *-z*+1/2; (x) *x*-1/2, *-y*+1/2, *-z*+1/4; (xi) *-x*+1/2, *y*+1/2, *-z*+3/4; (ix) *-y*, *-x*, *-z*+1/2; (x) *x*-1/2, *-y*+1/2, *-z*+1/4; (xi) *-x*+1/2, *y*+1/2, *-z*+3/4; (ix) *-y*, *-x*, *-z*+1/2; (x) *x*-1/2, *-y*+1/2, *-z*+1/4; (xi) *-x*+1/2, *y*+1/2, *-z*+3/4; (ix) *-y*, *-x*, *-z*+1/2; (x) *x*-1/2, *-y*+1/2, *-z*+1/4; (xi) *-x*+1/2, *y*+1/2, *-z*+3/4; (ix) *-y*, *-z*, *-z*+1/2; (x) *x*-1/2, *-y*+1/2, *-z*+1/4; (xi) *-x*+1/2, *y*+1/2, *-z*+3/4.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O2—H2···O3 ⁱ	0.82	1.85	2.645 (7)	162
C20—H20A···O2	0.97	2.21	2.873 (7)	125
Symmetry codes: (i) $y, x, -z$.				

Fig. 1

Fig. 2

